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The instabilities of barotropic and baroclinic, quasi-geostrophic, f-plane, circular 
vortices are found using a linearized contour dynamics model. We model the vortex 
using a circular region of horizontally uniform potential vorticity surrounded by an 
annulus of uniform, but different, potential vorticity. We concentrate mostly upon 
isolated vortices with no circulation in the basic state outside the outer radius b. In  
addition to linear analyses, we also consider weakly nonlinear waves. The amplitude 
equation has a cubic nonlinearity and, depending upon the sign of the coefficient of 
the cubic term, may give nonlinear stabilization or nonlinear enhancement of the 
growth. Barotropic isolated eddies are unstable when the outer annulus is narrow 
enough; on the other hand, if the scale of the whole vortex is sufficiently small. 
compared to the radius of deformation of a baroclinic mode, the break up may be 
preferentially to a depth-varying disturbance corresponding to a twisting and tilting 
of the vortex. As the vortex becomes more baroclinic, we find that large-scale 
vortices show an elliptical mode baroclinic instability as well which is relatively 
insensitive to the scale of the outer annulus. When the baroclinic currents in the basic 
state dominate, the twisting mode disappears, and we see only the instabilities 
associated with either strong enough shear in the annular region or sufficiently large 
vortices compared with the deformation radius. The finite amplitude results show 
that the baroclinic instability mode for large enough vortices is nonlinearly stabilized 
while in most cases. the other two kinds of instability are nonlinearly destabilized. 

1. Introduction 
Transient motions in geophysical flows often have the character of relatively 

strong vortices embedded in weaker more turbulent eddy fields. Gulf Stream rings, 
blocking highs, and the ‘spots’ on Jupiter all seem to have strong recirculating flows 
and closed streamlines. In  addition, the motions are often strongly baroclinic. In this 
paper, we consider the stability of circular barotropic and baroclinic vortices for 
quasi-geostrophic motions. We have investigated both the linear stability and the 
finite amplitude steady state perturbed configurations existing near the neutral 
stability boundary: the latter allows us to infer the behaviour as an unstable 
perturbation grows to finite (though still small) amplitude. We use the ‘contour 
dynamics’ model (Zabusky, Hughes & Roberts i979) and derive the methods for 
applying this to linear and weakly nonlinear stability problems in a baroclinic 
fluid. 

Our results show that isolated vortices (having V = 0 for T > b )  have three 
instabilities : 

( i )  For vortices with sharp shear a t  the outer edge (a relatively narrow region in 
which the velocity decreases to zero - comparable in size to the distance from the 
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centre to the velocity maximum), an elliptical mode ( m  = 2 )  instability occurs. This 
tends to be subcritical and grows until the vortex breaks up into dipolar structures. 

(ii) For vortices with enough baroclinic flow and which are larger than about twice 
the deformation radius with a fairly broad outer shear region, baroclinic instability 
is the dominant mechanism. The mode is elliptical and supercritical. At larger 
amplitudes, dipole formation occurs (Helfrich & Send, 1988). 

(iii) When the deep flow is co-rotating with the upper flow, there is a ‘twisting ’ 
mode instability involving tilting of the vortex axis and generation of more 
barotropic motions. This occurs for vortices smaller than the deformation radius 
with fairly broad regions in which the flow decreases to zero. The instability is 
usually subcritical. 

Our results suggest that  stable baroclinic vortices will have the velocity maximum 
a t  around 1.5 times the deformation radius with the outer shear region being wider 
than the radius to the maximum velocity region. This is quite consistent with the 
results of the warm core rings study (Joyce 1984; Olson et al. 1985). Our model lacks 
many elements, of course. The structure of the vortex is very simple, although the 
method can be easily extended to much more complex cases. Most of the geophysical 
situations mentioned above, of course, do involve background gradients of potential 
vorticity -the /3-effect and perhaps sheared zonal flows. We do not consider this 
complication here; the steady vortex structures are much more complex (cf. 
Malanotte-Rizzoli 1982 ; Flierl 1987 for reviews) and the contour dynamics method 
does not easily handle large-scale gradients of potential vorticity. But we feel that 
the stability boundaries derived still give insight into the /3-plane problem in the 
following sense. We expect the distortions induced by Rossby waves will trigger the 
instability if it exists. Otherwise, the vortex will propagate and evolve, shedding and 
entraining water with different potential vorticities. I n  essence, the /3-effect, or, for 
that matter, external shears or eddies, provide a forcing upon the vortex. I ts  
response depends upon the natural modes of oscillation of the vortex. For strong 
vortices (U 9 /3R2), then, we anticipate that the stability for the f-plane structure 
will still be an important property to estimate. Our study provides a thorough 
cxploration of the parameter space for baroclinic vortices. 

2. Linearized perturbations 
We shall use the quasi-geostrophic f-plane equations with the assumption that the 

potential vorticity a t  each depth is piecewise constant. In  the unperturbed state, the 
boundaries between various potential vorticity values wp will be taken to be a t  non- 
dimensional radii r = 1 and r = b. In  the perturbed state, we have 

q l ( z ) + q b ( Z ) >  r < 1 + ? ( Z ) >  

= { f % ) >  1 + ? ( z )  < r < ~ + T ( z ) ,  

b + T ( Z )  < Y. 

(see figure 1) .  Note that q1 is defined to be the difference between the potential 
vorticity in the inner and middle regions and pb is the difference between the middle 
and outer regions: the p terms represent potential vorticity ‘gradients’, not the 
potential vorticity values themselves. Adopting the contour dynamics approach, we 
express the streamfunction Y(T, 8, z ,  t )  as a functional of the interface positions, 

(V2+L,) Y = Vz+--- Y = p l ( z ) i f ( l + ~ - r ) + p b ( Z ) i f ( b + ~ - r ) ,  (2.1) ( :zL:z:J 
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of the perturbed baroclinic vortex, showing the surfaces bounding 
of horizontally uniform potential vorticity. 
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FIGURE 1 .  Sketch the regions 

where X is the Heaviside stepfunction. L and H here are the dimensional radii of the 
unperturbed inner region and the fluid depth, respectively. The interfaces evolve 
according to  the kinematic condition 

where the total derivative with respect to 8 of Y on the interface is used. 

Y into a basic state $( r ,  z )  satisfying 
We can now consider a linearized version of the contour dynamics model : we split 

(vz + L,) $ = Q1*( 1 - ?") + q b  %(b - r ) ,  

and the perturbation 

(Vz +L,) $ = p, [X( l  + q - r )  - X ( b - r ) ]  +qb  [ X ( b + 7 - r )  - X(b -.)I. 

(v2 + L,) $ = 41 7/8( 1 -?") + q b 7 8 ( b - r ) ,  

Linearizing by expanding the right-hand side gives 

(2.4) 

while the linearized kinematic equations are just 
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Thus $ is related to the Green function for the Laplacian operator in polar 
coordinates. Notice that the equation for Y, determined by differentiating ( 2 . 3 ) ,  

= -qlcY(l-r)-qbcY(b-r), 
i a  a 1 

(2.6) 

is very clearly related to the perturbation structure equation (2.4). We now assume 
+, q and r are all proportional to exp (im (Gat)) to find 

l a  a m2 

r ar ar r2  
--r---+L, + = q1qcY(l-r)+q,r6(b-r), 

(?-a17 = -;+(b, 1 z ) .  
(2.9) 

Equations (2 .6) ,  (2.7)-(2.9) or their modally truncated (in the vertical) forms will be 
the basis for our analysis. The physics in these is quite straightforward : perturbations 
in the boundaries produce anomalies in potential vorticity near r = 1 and r = b. The 
anomalies in turn produce flows which move the interfaces. 

3. Barotropic vortex 
For a barotropic vortex, subjected to barotropic perturbations, the linear results 

quoted below have been obtained previously (Michalke & Timme 1967 ; Childress 
1984; Flier1 1984) although we will focus on somewhat different aspects. In  
particular, we wish to emphasize the instability properties of the ‘isolated ’ vortex, 
having no net integrated vorticity. Gent & MeWilliams (1986) have solved 
numerically for the instabilities of smoother barotropic circular eddies ; the results 
here provide analytic examples confirming their findings. 

When the basic flow is barotropic, q1 and qb independent of z ,  we can separate 
variables in (2.7)-(2.9) to find 

replacing (2.7). Here $, 7, r are proportional to one of the vertical eigenmodes F ( z )  
and h2 is the non-dimensional eigenvalue L2/R:  where R, is the dimensional 
deformation radius for the mode in question. Solving the Green function equation 
(3.1) allows us to write $(1), +(b)  as linear combinations of 7,  7 :  

or v / = - M , Q ~ .  

We shall consider both the baroclinic form given above and the barotropic case, 
which is the limit as h goes to 0 of (3.2). Note that 

l im~,(Aa)K,(h~)  = (a/p),/2m, 
h*O 
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M m + (  7 1 y). 1 

2mbm+l 

The kinematic equations (2.8) yield 

Vq+v = nq. 

v1 = M,lA\,OQ1, 

Note that the matrix V satisfies the equation 

which can be used to find either the velocity matrix from the potential vorticity 
differences matrix or vice versa (by inverting the M ,  matrix), recalling that both are 
diagonal matrices. 

Altogether then we have the matrix eigenvalue problem 

[ V - M m Q ] q = Q q .  (3.3) 

The dispersion relationship 

n = t [Y ( l ) -q , I , (A)K , (A)+- -  V7(b)  qb I,(Ab) K,(hb)] 
b 

gives the necessary condition for stability 

41 46 < O ,  

that the potential vorticity gradient must change sign (cf. Howard & Gupta 1962). 
However the geometrical constraints (integral m )  on the problem imply that the 
necessary condition is not sufficient ; therefore we must examine the stability 
criterion, 

in more detail. We can reduce the parameter space dimension to  4 by choosing 
'(1) = 1 (yl+qb = 2 ) ;  we then must explore the stability criterion (3.5) and growth 
rates versus m, A = qb/(ql+qb) (the ratio of the outer potential vorticity to the inner 
potential vorticity), b and A. From the circulation theorem or the equation relating 
V to Q above, we can express ' ( b )  in terms of these parameters: 

+ A b  
1 - A  

V ( b )  = - 
b 
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A = O  

b x-- -I - - ’ 
5 3 V(b) = 0 4 

A 0  

- 1  
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- 3  

-4 S 

m = L  

FIGURE 2. Boundaries in parameter space of the unstable regions for barotropic perturbations to a 
barotropic vortex. Shading indicates unstable regions. Instability boundaries are shown for various 
azimuthal mode numbers, m. The dashed line shows the relationship between the parameters A and 
b such that V ( b )  = 0. The N and S labels show points where the bifurcation is normal or subcritical, 
respectively (see $6). 

and (3.5) becomes 

I’ 1 - A  
1-2(1-A)Im(h)K,(h)--- A + 2AI,(hb)K,(hb) 

b2 

< - l6 ( l  - A )  AI&(h)K&(hb).  (3.6) 

3.1. Barotropic perturbations 
When the perturbations are barotropic ( A  = 0), the stability criterion, found by the 
same substitution, I,(hcr) K,(hp) becomes (cr/P)”/2m, is 

(3.7) 

This is plotted for various values of m in figure 2. 
From this diagram and the formulae above, we find : 
(i) The elliptical mode (m = 2 )  grows only for A < 0 (opposite vorticities in the 

core and outer regions) ; in fact, the equation above shows that we need 

($b2 - 1)2  
b2-  1 

A < -  

Note that this result was not discovered by Michalke & Timme, since they considered 
only the A > 1 case. 

(ii) The higher modes are unstable for A < 0 and b values in the proper range. For 
ordinary values of A ,  the outer annulus must be pretty narrow: b < - 2 for 
instability, with even sharper transition zones required for the higher modes. 
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(iii) The modes for m > 2 are unstable also when A > 1 and b is in a band centred 
a t  higher values than for the A < 0 case. For each mode, the unstable region extends 
down and toward the right (as b increases), narrowing into a thin region around the 
curve 

1 1  I---- 
m b2 
2 1 '  I---- 
m b2 

A =  

Note that the unstable regions for the higher m values extend in under the regions 
for the lower values (but may be very narrow in extent, i.e. only a limited set of 
values will be unstable). Thus we expect that  a small increase in A above the critical 
value d = 1 will lead to the appearance of a high azimuthal mode. 

(iv) The m = 1 mode is neutral. But when the eddy is isolated in the sense that 
V ( b )  = 0,  so that there is no net vorticity, the two roots are degenerate. Both modes 
have SZ = 0;  Stern (private communication) and Biebuyck (1986) have shown that 
this degeneracy leads to steady propagation of the vortex when the inner and outer 
circles are displaced in opposite directions. This could be viewed as a linear, rather 
than exponential, instability. When V(b)  =k 0, the structure moves in a circle with 
radius proportional to the (perturbation amplitude)/ V ( b ) .  

= rn Im (f2) shows rather different behaviours in the A < 0 and 
A > 1 regions of parameter spaces. Michalke & Timme showed the behaviour of as 
d increases above 1 : for positive d ,  the higher modes enter first as the shear across 
the outer region is increased. The highest modes are unstable only for a narrow A 
band (when b is fixed) and for large A ,  where several modes may be unstable, the 
growth rate peaks at  an intermediate wavenumber. In contrast, in the negative A 
region, the lower modes are the first to become unstable, the elliptical mode entering 
for the smallest lAl when b > 1.3. I n  both cases, when b is small enough (e.g. b = 1.2) 
and A is large enough, the intermediate wavenumbers are the most unstable. 

As a final example we consider the growth rates of perturbations on the isolated 
vortex V ( b )  = 0, A = - 1/(b2-  1 ) .  This restriction makes our barotropic parameter 
space one-dimensional, shown by the dashed line in figure 2. The instabilities occur 
when 

The growth rate 

m = 2 ,  b < 2 ,  

m = 3, 

m = 4, 

b < (1  + d2); = 1.554, 

b < i (2+ 101) = 1.385. 

The growth rates in this case, figure 3, show both that the elliptical mode appears 
first as we consider narrower and narrower (and also higher vorticity) outer regions 
and that the higher modes appear with increasing growth rates as b decreases. For 
vortices with narrow outer regions, the growth rate is highest for intermediate 
wavenumbers. 

Modal structures. The structure of the unstable modes can be drawn from 
knowledge of the eigenvectors for a growing mode. As an example, we show in figure 
4 the positions of the contours r = 1 + q ,  b+r with an arbitrary amplitude being 
assigned to the perturbation. Note the phase shifts in the orientation of the vorticity 
contours. Melander & Zabusky (private communication) have argued that a 
perturbed contour will elongate when there is a phase shift between the 
streamfunction and the perturbations in the vorticity contour such that the flow has 
an outward component. If we consider the motions induced by an elliptical 
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FIGURE 3. Growth rates CT = m Im (a) for barotropic perturbations of an isolated barotropic 
vortex as a function of the outer radius b. 

FIGURE 4. Sketch of the contours of vorticity boundaries and streamfunction calculated from the 
linearized solution for a growing mode. The basic state is an isolated vortex with b = 1.5. 

deformation of the outer contour (figure 5 a ) ,  they impart a procession to the outer 
ellipse in the direction indicated but will not, in and of themselves, generate 
stretching or squashing of the ellipse. But if we orient the elliptically distorted 
contours in the sense shown (figure 5 b ) ,  the motions induced by the outer vorticity 
anomalies will tend to increase the distortion of the inner vorticity contour. We next 
mark the vorticity anomalies induced by the distortion of the inner circle and the 
circulations induced. At this point, the importance of the Rayleigh criterion becomes 
clear; in the case 0 < A < 1, the outer distortion will be reduced if the inner is 
increased and vice versa. For A < 0 or A > 1, the two disturbances can both be 
increasing a t  the same time so that instability is possible. This method (cf. Hoskins, 
McIntyre & Robertson 1985) of demonstrating Rayleigh’s theorem brings out the 
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d < O  O < d < l  l t d  

FIGURE 5.  (a )  Sketches of deformed contours for three different types of vortex (different A values). 
The orientations are chosen so that  the perturbation flow associated with the outer vortex 
anomalies will reinforce the deformation of the inner contour (6, c ) .  ( d )  Flows induced by the 
deformation of the inner contour, showing tha t  i t  can reinforce the deformation of the outer 
contour when A < 0 or A > 1 .  

physical meaning clearly. In  addition to being able to establish the proper phase 
relationships a t  t = 0, however, i t  is necessary to maintain them. Thus the azimuthal 
propagation rates of the two disturbances must also match. The propagation rates 
depend on the basic state velocity, the wavenumber of the disturbances, the vorticity 
jumps, and the separation between the contours. The latter is important because the 
waves in one contour generally have their phase speeds altered by the waves in the 
other contour. We can now see that the parameter regimes where Rayleigh’s criterion 
for instability is met, yet the vortex is not unstable, correspond to  cases where the 
waves cannot phase lock. Or one could view the problem as being that the 
wavelengths required for phase locking in a case where V ( b )  = 0 and b > 2, for 
example, are just too long to  fit around the circumference of the eddy. This example 
of the insufficiency of the Rayleigh criterion is interesting since i t  stems from an 
inability to meet a quantization condition (cf. Lindzen & Tung 1978) because of the 
structure of the basic state rather than anything to do with the geometry of the 
container for the fluid. 

We can also use the perturbed eddy structure to guess a t  the finite amplitude 
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evolution. If we replace each lobe of each wave with a point vortex having l / m  of 
the vorticity in the area, we can fairly easily see the further evolution. In the case 
A < 0, the opposite-signed vortices will pair and move out away from the original 
centre. In  the A > 0 case, however, the vortices all have the same signs so that they 
will rotate around each other and remain fairly confined. The former case will be 
discussed in more detail below ; Dritschel(l986) has solved the latter case numerically 
using contour dynamics and demonstrates that the annular ring tends to break up 
into a set of vortices which interact and cycle around each other. 

3.2. Baroclinic perturbations 
When the perturbations are baroclinic ( A  > 0), the stability properties are somewhat 
different. In  general, the stability boundaries for baroclinic perturbations lie at 
smaller b values than the critical curves for the barotropic mode. However there are 
two notable exceptions : first, there is now an unstable band for the elliptical m = 2 
mode when A > 1 and, secondly, the barotropic eddy becomes unstable in previously 
stable regimes to the m = 1 perturbations (figure 6) for A < 0. Gent & McWilliams 
discovered this property in their numerical eigenvalue calculations ; for the model 
considered here, we can prove it analytically the small A version of (3 .6):  

The critical curve (equality rather than inequality in the above equation) grazes the 
A = 0 axis a t  

b, = [l-zr,(h)K,(h)]-t, 

which is finite for m = 1 and h > 0. If we expand around this value of b, the 
instability criterion becomes 

(b - b,Y 
4b; 1; ( A )  K;  (hb,) . 

A < -  

For small, but finite A,  

so that the instability to baroclinic modes can occur even when the outer boundary 
is quite far out and has only weak negative vorticity. Figure 6 a  shows how the 
degenerate m = 1 roots around the P(b) = 0 line open into an unstable region when 
h > 0. Note, however that the whole structure must be small compared to R, for (3.8) 
to hold, so that i t  is perhaps best to think of this case as having very compact cores. 
This analytic proof of the instability to m = 1 modes is confirmed by the instability 
diagrams (figure 6). 

We can understand the mechanism for the ' twisting ' mode m = 1 instability by 
again considering the vorticity anomalies and their influence upon each other (figure 
7). If we displace a single vortex in a baroclinic fashion - giving i t  a tilt - we produce 
anomalous vorticity as shown in figure 7 (a) ; these patches tend to cause the tilted 
vortex to precess. The larger the displacement, the larger the areal extent of the 
anomalies (or the stronger the circulation associated with the anomalies) and the 
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FIGURE 6. Instability boundaries for baroclinic perturbations on a barotropic vortex for various 
azimuthal modes m and two different ratios of vortex radius to deformation radius h = 0.2 and 1 .O .  
Note the destabilization of the ‘twisting’ mode rn = 1. 

faster the rotation of the tilted axis. (We are, of course, still in the linear regime so 
that we can interpret the last sentence as saying that the m = 1 wave progresses with 
a frequency Q implying that a point on the axis on the upper surface moves a t  a 
speed $Qd where d is the horizontal distance between the upper and lower centres. 
Thus the speed is proportional to  d . )  Next consider shifting the inner and outer 
regions relative to each other a t  one depth (figure 7 b ) .  Because the regions have 
opposite signs, the vortex anomalies now tend to produce translation rather than 
rotation (Stern, private communication ; Biebuyck 1986). Again the translational 
velocity is proportional to the distance between the displaced centres. If we now 
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Side 

(4 

FIGURE 7. Mechanism for twisting mode instability: ( a )  rotation of a tilted vortex, combined with 
( b )  propagation when inner and outer boundaries displaced relative to each other. When the inner 
and outer boundaries are tilted in different directions ( c ) ,  the surface and deep propagation 
tendencies (d )  and rotation tendencies ( e )  sum up to a motion enhancing the original perturbation 
(f). 
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FIGURE 8. Contours of growth rate for the isolated barotropic vortex as a function of outer radius 
b and the ratio A of the inner radius to the deformation radius of the perturbation. The first three 
figures show the growth rates for the individual modes. Contour intervals are 0.05, 0.2, 0.2 for 
m = 1 ,  2 ,  3 respectively. Dotted lines delineate regions with different numbers of unstable modes ; 
e.g. for m = 2 ,  there are two unstable modes (one barotropic and one ba,roclinic) for 6 = 1.5 and 
h = 1 (although the most rapidly growing mode for m = 2 ,  3 is the barotropic one). The fourth 
figure shows the boundaries of the unstable region. The S indicates a nonlinearly subcritical 
transition. 

apply vertical tilt to both the inner and outer boundaries, but in different directions 
(figure 7c), we can arrange that the horizontal interactions of the vorticity anomalies 
cause propagation of the upper and lower patterns in different directions (figure 7 d ) .  
Meanwhile the interactions in the vertical tend to rotate the inner and outer centres 
in opposite directions (figure 7 e) ; for proper choice of the initial arrangements, then, 
the net result is a tendency to increase the separation of the four centres (figure 7f l  
(and possibly a rotation of the structure as well ; we have not been overly specific here 
about the relative strengths of various terms, including mean advection, and have 
considered only some of the interactions among the four anomalies.) But for vortex 
patches, unlike point vortices, the interactions get stronger as the separations of the 
centres increase (as long as they are still small enough for the linear approximation 
to hold). Thus the rate of expamsion of the pattern is proportional to the separations 
and the separations will increase exponentially. So the instability comes about 
because of the propagation tendency arising from horizontal offsets in the centres of 
the core and the outer region and the rotation tendencies from the vertical offsets. 
We anticipate that this twisting mode instability will grow until the interior regions 
are sufficiently separated that the vertical interactions become weak ; simultaneously, 
the propagation tendency will decrease as the outer boundaries become distorted and 
zero vorticity fluid is entrained (Stern, private communication ; Biebuyck 1986). 
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3.3. Discussion 
We summarize the results for the isolated barotropic vortex by contouring the 
growth rates versus b and h in figure 8. These plots show the growth rate of the more 
rapidly growing mode and indicate by dotted lines the regions in which there are two 
unstable modes. The maps show that the baroclinic mode m = 1 will be the only 
unstable mode for b > 2 and small enough A( < 1.4). These results in general agree 
with Gent & McWilliams: for vortices which are small enough compared to the 
deformation radius and which have fairly weak shear in the outer region, the 
instability tends to generate baroclinic modes. This 'twisting ' mode instability does 
not occur for rectilinear flows (or Rossby waves, Fu & Flierl 1980) and, as Gent & 
McWilliams point out, probably represents an important limitation on the types of 
eddies which one could expect to persist in a more complicated flow - small-scale 
barotropic motions will break apart vertically. We shall see below that baroclinic 
eddies, in contrast, will not be stable if too large. 

4. Baroclinic vortex 
When the basic state vortex is baroclinic with q l ,  qb (and therefore v(1), V ( b ) )  

functions of z ,  the vertical structures of 7 and r are no longer simple functions of z.  
Instead we expect to find the normal modes to be complicated, with phase shifts in 
the vertical and critical layers; we shall avoid most of these problems by using a 
truncated model expansion in the vertical. In the horizontal, of course, the fact that 
the potential vorticity is piecewise constant likewise eliminates critical layers. Using 
a modal formulation (cf. Flierl 1978), rather than a layer model, has the advantage 
that the eigenvalue, Q, will appear only on the diagonal of the final matrices, so that 
standard eigenvalue solvers can be employed. We can illustrate this procedure by 
considering the case with a single interface 

This problem was treated in the two-layer model by Pedlosky (1985) ; we also include 
a barotropic component to the flow. We shall choose, for simplicity, to make the 
mean vortex have only barotropic and first baroclinic modal amplitude so that 

V(1 ,  z )  = Vo+F(z) .  
Henceforth F ( z )  and A will be used to denote the first baroclinic eigenfunction and 
eigenvalue of the vertical structure equation 

Fn*(O) = F n z ( l )  = 0, 

and the subscripts will be used when necessary to indicate the other eigenmodes. The 
F terms will be normalized so that they have vertically-averaged squared value equal 
to one. The ratio of barotropic to baroclinic kinetic energy in the basic state vortex 
a t  r = 1 is just V i .  

For this velocity field, the potential vorticity is given by 

q = 2v0+[11(h)K1(h)]-1F(z). 
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The form of the vorticity equation suggests that we can expand $ and 7 in the 

Substituting these into (4.1) and projecting the equations on F,(z) ,  we find 

and 

where 

(4.2) 

(4.3) 

This infinite matrix eigenvalue problem can be solved by truncation to various 
degrees. In  Flierl (1978), it was demonstrated that the two-mode truncation, 
equivalent to a two-layer model, reproduced the results of a ten-mode truncation 
fairly closely. 

The two-mode truncation matrix eigenvalue problem, 

(where the argument of all the I and K terms is A )  leads to a quadratic dispersion 
relationship with 4 parameters V,, A ,  m and 6 = &. We select two 6 values: 0 
(atmospheric constant N or equal layer depth model) and 1.8 (oceanic case). The 
former case corresponds to a baroclinic mode which has equal and opposite positive 
and negative lobes - cos ( n z / H ) ,  while the positive values of 6 will be obtained when 
the near surface positive lobe dominates over the deep negative lobe - i.e. the surface 
layer is relatively shallow. The value of 1.8 was obtained from numerical solutions of 
the vertical structure equation for a typical oceanic N 2  profile (Flierl 1978). 

From the equation above, the condition for stability is 

which is shown in V,, h space for various m in figure 9. We also contrast this stability 
criterion to the necessary criterion for stability 

for the layer version of the two-mode truncation where 

2/ 6 = ;((["+)t-t), 
and 6 is the ratio of layer depths. For the 6 values used above, we have 13 = 1 and 
6 = 0.19, respectively. The criterion simply is the condition that the potential 
vorticity be opposite in sign in the two layers. The stability criterion for the purely 
baroclinic vortex is given in Pedlosky (1985) ; the addition of barotropic circulation 
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does make some interesting modifications. (Helfrich & Send 1988 have considered 
this problem also.) The figure shows that for the baroclinic vortex : 

(i)  The vortex becomes unstable if i t  is sufficiently large compared to  the 
deformation radius and there is not too much barotropic circulation. For the pure 
baroclinic vortex. the critical values of h are 

1.705, m = 2, ( =  0, 
2.840, m = 3, (=  0, 
2.096, m = 2, 5 = 1.8, 
3.417, m = 3, ( = 1.8. 

(ii) The necessary condition for instability is far from sufficient. 
(iii) When 5 = 0 (e.g. uniform stratification) a barotropic circulation will stabilize 

the vortex. When ( + 0, barotropic flow which reinforces the deeper layer circulation 
can destabilize the vortex. The least stable case (smallest unstable vortex) has strong 
deep flow and weaker shallow flow in the same sense as the deep circulation - not the 
kind of eddy found in oceanic data. 
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(iv) When V, = 0 (pure baroclinic flow), mode 2 always becomes unstable first; 
when V, + 0, however, it is possible that a higher azimuthal mode may be excited 
first. 

(v) The m = 1 mode is stable but has degenerate eigenvalues if either V, = 0 or 
Il(A)Kl(A) = 0.5. The latter cannot occur so that only pure baroclinic vortices give 
rise to steadily propagating solutions (see Appendix A). These translating states are 
less singular versions of the Hogg & Stommel (1985) ' hetons ', although we here only 
obtain the cases where the centres are separated by a small amount. Polvani (private 
communication) has computed the states with large amplitudes and finds they are 
similar. 

Analysis of the growth rates show that 

I m Q  - ml, 

for V, = 0 and large A. In the barotropic case, if b z 1 + E ,  the systems looks like a 
shear layer and the most rapidly growing modes have a scale order E .  Here, for large 
A ,  the vortex has flow only near r = 1 and the shear occurs over a characteristic scale 
l / A  (dimensionally, the deformation radius) ; the most rapidly growing modes have 
a scale on this order, corresponding to large m - many waves around the perimeter. 

4.1. Discussion 
The characteristics of the laboratory instabilities observed by Saunders (1973) and 
Griffiths & Linden (1981) are reproduced fairly well by this linear calculation. As in 
the experiments, we find that increasing the scale of the vortex relative to the 
deformation radius leads to higher mode instabilities. Indeed, figure 9 ( a )  suggests 
that  the radius a t  which wavenumber m is neutral increases roughly with m, as in 
Saunders' experiments. From the stability criterion (4.4), we find that for 6 = 0 and 
V, = 0 the waves with m < [211(A) K1(A)]-' are unstable - a nearly linear relationship. 
Oceanic vortices (6 > 0, corresponding to a shallow upper layer) are destabilized by 
counter-rotating barotropic flow, although the least stable configuration (requiring 
the smallest eddy radius) needs to have barotropic flow so strong that the velocity 
in the upper layer is reversed from the sense of circulation of the vertical shear. Thus 
the deep flow in this configuration has the same direction of circulation but is 
stronger than the shallow flow ; this kind of flow is certainly not among the common 
paradigms for oceanic eddies, so that this extreme case is of less importance than the 
stabilization or destabilization occurring for small co- or counter-rotating barotropic 
circulations. 

The mechanism for the baroclinic instability is essentially the same as that 
sketched in figure 5, except that the vorticity anomalies associated with the two 
deformed contours now are in different layers. Again, it is possible for perturbation 
flows associated with the distortion of one of the contours to enhance the distortion 
of the other (and vice versa) only if the vorticity jumps from the eddy to the outside 
are opposite in sign. The outward tendency must be strong enough to overcome the 
tendency for the upper and lower waves to lose their phase relationships as the waves 
propagate and are advected around the vortex. 
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5. Isolated baroclinic vortex 
When we have two interfaces at r = 1 and r = b, we can examine mixed 

barotropic/baroclinic instabilities. The dispersion relationship becomes fourth order 
in SZ and therefore can still be solved exactly. The matrix equations are of the same 
form as (3.2)-(3.3) with the definitions: 

and 
v y  1) 0 VbC(1) 0 

V b C (  1) 0 Vbt( 1) + fP( 1 )  0 

0 Vbc(b ) /b  

v = (  0 O V b C ( b ) / b  Vbt(b'lb 0 Vbt(b)/b -k f V b c ( b ) / b  

The only real difficulty is that the parameter space is very large : growth rates in 
the truncated model depend on 7 parameters (Vbt ( l ) ,  Vbc(b ) ,  Vbt(b) ,  A, f ,  b and m, for 
VbC(l )  = 1) .  To limit the scope of the discussion we shall consider only isolated 
vortices V ( b )  = 0 and two ( values f = 0 and f = 1.8 as above, leaving a manageable 
number of parameters : V, = Bbt( 1)/ Vbc( l), A,  b and m. As the discussion below makes 
clear, the instabilities appear to be modified forms of those found previously ~ the 
rn = 1 and m = 2 instabilities from $3 and the m = 2 baroclinic instability from $4. 
In figure 10, we illustrate the growth rates found for different mode numbers m on 
the (A ,  b)-plane. Two values of V, have been selected to show the differences when the 
deep fluid is counter-rotating versus co-rotating with the upper fluid. In  figure 11,  we 
show the boundary of the stable region for modes m = 1 to 3 and a whole series of 
V, values. Two f values 1.8 and 0, have been used. From these figures and study of 
the amplitudes and phases of the perturbations of the upper and lower layer inner 
and outer interface displacements, we conclude : 

( a )  The purely baroclinic isolated vortex (V, = 0) is unstable to modes m 2 2 and 
shows two distinct types of instability. There is a slowly growing mode (with large 
lower layer amplitudes) which exists for small enough A and b,  and there is a rapidly 
growing mode which exists for small enough b or large enough A. At large b, this latter 
mode looks exactly like the baroclinic instability found in $4. For both modes, 
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FIGURE 10. Growth rates versus outer radius and the ratio of the inner radius to the deformat,ion 
radius for various azimuthal mode numbers and increasing ratios of barotropic to baroclinic flow 
a t  r = 1 .  The figures are organized as in figure 8. The pu’ indicates a normal, supercritical transition. 
The bc and bt values indicate the amplitudes of the baroclinic and barotropic velocities, 
respectively. Contour intervals are ( a )  V, = 0, rn = (1, 2, 3), contoured by (not unstable, 0.2, 0.4), 
respectively, ( b )  V, = 0.5, m = ( 1 ,  2, 3), contoured by (0.01, 0.25, 0.4). 
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however, the phase relationships suggest that  the mode is growing by extracting 
kinetic and potential energy from the basic state circular vortex. At small b, the 
modes appear to be essentially like the barotropic instability of $3, with one mode 
being dominated by upper layer displacements and the other by lower layer 
deviations; however, the contribution from the baroclinicity apparently still 
contributes to the growth of the perturbation. The small out-jutting region of 
instability near A = 1.6, b = 2.5 for 6 = 1.8 is a region of relatively weakly growing 
instability ; it  cuts off above A = 2. This mode has fairly large amplitude in the lower 
layer. 

( b )  Similar results obtain whenever the lower layer velocity a t  r = 1 is in the 
opposite direction to the upper layer flow ; that  is, when V, < d, the vortex is stable 
only for large enough b and small enough A. 

( c )  When the basic state velocities are zero on both lower layer interfaces, 
(V, = d - though the lower layer velocity is not everywhere zero), only one mode is 
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unstable. This result should be comparable to those obtained by Hart  (1974), who 
used a model with zero flow in the lower layer of a two-layer fluid. The basic state 
profiles are rather different - Hart has no relative vorticity near the centre; 
furthermore, he uses a linear rather than a polar coordinate system. However, our 
results resemble Hart’s along a line b z 1.9. Vortices small compared to the 
deformation radius are unstable to an essentially barotropic mechanism. Inter- 
mediate scale vortices are neutral, while the larger ones become unstable to a 
baroclinic instability. He does not see the region of parameter space (b  > 2) for which 
the small vortices are stable. 

( d )  When the vortex has a large enough barotropic part, (V, > &), we see both the 
baroclinic m = 1 mode and the barotropic higher m modes discussed in $3, Initially, 
when the lower layer flow is weak but co-rotating with the upper layer circulation, 
the m = 1 mode grows only for small vortices. In any case, this mode is dominant 
only for h < 1.5, b > 2 - vortices smaller or order of the deformation radius in size, 
with a fairly broad region of decay of the basic state velocity field. 

5.1. Discussion 
Our results can be most directly compared to Ikeda’s (1981) numerical calculations 
of the linearized stability properties for Gaussian vortices in a two-layer model. He 
sees a similar dependence upon A, but because the barotropic Gaussian is only very 
weakly unstable (Carton, private communication and our own calculations using 
multiple contours to approach a smooth Gaussian profile), he does not see the 
instability for narrow outer shear regions revealed in this study. In effect his b value 
is nearly two. Also, Ikeda did not consider the m = 1 mode. He does, however, a 
much more complete exploration of the dependence upon the lower layer velocity 
(compared to the upper layer flow), which demonstrates that the growth rate 
associated with the baroclinic instability of $4 decreases with stronger lower layer 
flow. He also finds two modes of instability for larger eddies, whereas we have only 
one unstable mode in this case. The difference presumably comes from the different 
potential vorticity distributions. 

6. Nonlinear calculations 
In this section, we apply an amplitude expansion to determine steadily rotating 

finite-amplitude structures bifurcating from the dispersion curve of the linear theory. 
The calculations are involved and there are subtle differences between the approach 
here and that of Pedlosky (1985) as discussed below ; in fact, slightly different results 
are obtained for the problem he treated (see Appendix B). The computation leads to 
an estimate for 52 as a function of A2, the perturbation amplitude squared, and other 
parameters such as b and h which determine the stability. In fact we obtain 
d52/dA2; for parameter values and 52 near coalescence points where unstable roots 
appear, dQ/dA2 will reveal whether the transition is subcritical (and may not 
equilibrate) or supercritical (with equilibration likely). The argument runs as follows 
(see figure 12): the solution for the displacements of the interfaces behaves like 
7 - A ( T )  exp ( -iQ, t )  and the amplitude satisfies a second-order cubic equation 

A,, = f ( b ) A + n ( b ) A  IA12, 
where b,  for example, is the bifurcation parameter and T represents a slow timescale. 
For steady rotating solutions, A - exp ( -  iSQ) and the rotation rate is approximately 
52, f8Q = 52,f ( - f -n  IAI’);. I n  the upper diagram of figure 12, corresponding to 
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and bifurcation parameter in ( a )  a normal or supercritical bifurcation and ( b )  a subcritical 
bifurcation. 

SS2(dS2/dA2) > 0, we have n negative; in the lower diagram, n is positive. The sign 
of n is calculated in the stable region, where f ( b )  is negative; however, n varies only 
slowly as b passes through the stability boundary into the region where f becomes 
positive, so we expect the sign will not be changed. Examination of the evolution 
equation above shows that the nonlinearity will retard the growth when n < 0 and 
f > 0, leading to a nonlinear vacillation around the solution /A(’ = -f/n. When 
n > 0, the nonlinearity enhances the instability as the amplitude increases and no 
equilibrium will be found. 

We shall first describe the conceptual framework for the calculation, without 
making the small-amplitude approximation. Details of the amplitude expansion are 
left to Appendices I3 (rectilinear, baroclinic, single interface problem analogous to 
Pedlosky’s) and C (circular problem). The important conceptual points can be made 
in the full finite amplitude context. 
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The procedure used is based again on contour dynamics and takes advantage of 
the linear relationship between potential vorticity and streamfunctions. The two- 
layer, rather than two-mode, formalism is more natural here, since the boundaries 
will reside in one or the other of the layers and since potential vorticity in each layer 
is conserved, whereas the potential vorticity in a mode is not. 

There are two steps in the procedure: 
(i) Given the locations of the boundaries between various regions of constant 

potential vorticity, calculate the streamfunction on these boundaries. To aid in 
discussion of this calculation, let us define a vortex patch as a region 9 of constant 
potential vorticity in one layer, with zero potential vorticity outside a 9  and in.the 
other layer. (Zero potential vorticity is being used in the quasi-geostrophic sense 
here, as distinguished from the form this quantity takes in the shallow-water model.) 
I n  our problem, the potential vorticity is the sum of the potential vorticities of four 
vortex patches : in the upper layer (indicated by superscript i) ,  g2 with area rcb2 and 
potential vorticity qhl) and g1 with area 71: and potential vorticity q y ) .  Note that q1 
still indicates the difference between the full potential vorticity in the inner region 
and that in the outer annulus. Thus we consider the inner regions as being additional 
anomalies of strength q1 stacked on top of anomalies of strength qb. The full potential 
vorticity in the upper layer inner region is found by summing the contributions from 
the two patches, q ~ l ) + q ~ ) .  In  the lower layer, we have two more patches a4 and 
g3. Step (i) then has three parts: (ia) for a given vortex patch, calculate the 
streamfunction Ycl) and Y(') associated with the vorticity in that patch as a function 
of r and 0.  Then, (ib), the upper layer streamfunction is evaluated along the curves 
iB1 and i39' and the lower layer one along iB3 and ag4.  Finally, (ic), the 
contributions to the value of Yon the curve a59 from each of the four vortex patches 
are summed. (Note that the step (ia) of obtaining Y from a vortex patch should be 
done in such a way that the flow is obtained as a functional of the boundary shape; 
the same formulae can then be used for each of the four patches.) 

Let us discuss this approach somewhat further for the baroclinic problem, since 
step (i) is where the distinction lies between our results and Pedlosky's. Consider 
three procedures for calculating the flow field as sketched in figure 13. The first 
method (figure 5.3a) follows the procedure outlined above: we use the vorticity 
distribution in the upper layer [w:) = 1.0 for r < 1 + p  and 0 for r > 1 + p ;  up) = 01 
to calculate Y along both the upper layer interface r = l + p  and the lower layer 
interface r = l+p.  (We use p and ,u as shorthand notations for ~ ( l )  and r('), the 
displacements of the upper and lower layer interfaces, respectively. The potential 
vorticity values of 1 and - 1 are chosen for example only.) In  doing this, we compute 
the flows in the inner and outer regions and match across r = 1 + p .  We then calculate 
the streamfunctions induced by the lower layer vorticity distribution [ w f )  = 0 ; 
w g )  = - 1.0 for r < 1 +,u and 0 for r > 1 +/A]. These two components are summed to 
yield the streamfunction along each interface as a functional of the shape of the two 
interfaces. In practice, the calculations are carried out to order amplitude cubed. 

The second procedure (figure 13b,  figure 2 of Pedlosky 1985), seems to be more 
intuitive: we define the solutions inside and outside of the interfaces from the full 
vorticity distribution (w:) = 1.0,0, w f )  = - 1.0,0, for the inner, outer regions). Since 
we are Taylor-expanding around r = 1 for each order in amplitude, we will match the 
inner and outer solutions a t  r = 1 + p  for the upper layer and r = 1 + p  for the lower 
layer by estimating them using Taylor expansions. 

The third procedure (figure 13c) accounts explicitly for the region which is 
neglected in the above analysis, that is the region between r = 1 + p  and r = 1 +p. I n  
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FIG~JRE 13. Three procedures for calculating flow of perturbed vortex. Arrows indicate matching 
of inner and outer solutions occurs across indicated curve. In  ( w ) ,  the flow is first calculated with 
the upper layer potential vorticity distribution and uniform PV in the lower layer. Then the 
calculation of flow is carried out with potential vorticity anomalies only in the lower layer. These 
two results are added. In (b ) ,  solutions in the inner and outer regions are matched directly. The 
intermediate region, in contrast to the emphasis placed upon it  in method (c), is not considered. 

the half of the domain where p > p, we write the streamfunction solution in the three 
regions shown using the potential vorticity distributions ( w f ) ,  ur)) = ( I ,  - I ) ,  
(0, - l ) ,  (0, 0) for regions 1, 2 and 3, respectively). We then match the solutions in 
region 1 to those in region 2 for both layers a t  r = 1 + p  and we match region 2 to 
region 3 (both layers again) a t  r = 1 +p. By this procedure we again find the 
streamfunctions on the interfaces. The middle region is only order amplitude in 
width, but it turns out that the contribution from this region does enter in the cubic- 
order term. While this procedure in principle will give the same results as the first, 
it seems difficult to handle the time-dependent changes in the geometry of region 2 
in an unsteady case. Numerical approaches to multilayer contour dynamics (Helfrich 
& Send 1988; Polvani, Zabusky & Flierl 1988) use the first procedure. 

The distinction with Pedlosky’s calculation is evident ; his procedure essentially 
neglects the intermediate region (region 2). The explicit calculation in Appendix B 
demonstrates that different results are obtained by this method in comparison with 
approaches ( a )  or (c). Thus the error in neglecting the intermediate region does affect 
the amplitude cubed estimate of Y and thereby dQ/dA2; we use approach ( a )  in our 
circular vortex calculations. 

(i i)  Now that we have !P on each boundary aBk as a functional of the four 
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be a boundary shapes, we can apply the condition that each boundary 
streamline in the co-rotating frame, 

Y = Q$r2 + const, on aa,, 
This requirement (or really these four requirements, one for each boundary) gives a 
nonlinear eigenvalue (Q)-eigenvector (a9,) problem from which we can compute the 
rotation rate as a function of the amplitude of the boundary disturbance. Also we 
find the shapes of the various boundaries. 

The major goal is simply the calculation of the sign of dQ/dA2, so we will leave any 
further detail to the Appendices and summarize the conclusions here, We remark, 
however, that this quantity is very sensitive to slight procedural or numerical errors. 
We have checked the code against the linear problem, against self-consistency 
between upper and lower layer perturbations, against the Kirchhoff vortex, and 
against the steadily rotating two-layer solutions derived by contour dynamics when 
vortieity appears in only one patch in the upper layer (Polvani et al. 1988). 

6.1. Results 
The most convenient way to  present the results of the nonlinear analyses is to 
indicate on figures 2. 8, 9 and 10 the points where such calculations were carried out 
and the type of bifurcation found. (Similar calculations were carried out for most of 
the parameter values shown in figure 11 ; the comments below are to some degree 
based also on these other experiments.) For each point we have fixed either h or b and 
found the value of the other parameter which is just on the stable side of a transition 
(at least two significant figures beyond the decimal point). The values of dQlcL4' for 
the higher and lower Q branches were calculated. If this quantity is positive for the 
higher-frequency branch and negative for the lower branch, then the transition is a 
supercritical bifurcation and is expected to equilibrate. This is indicated by an N 
[normal] on the figure. If the signs are opposite, we have a subcritical, non- 
equilibrating transition, indicated by S. (See again figure 12.) 

For the purely barotropic vortex, we find: 
(i) The finite amplitude states for the m = 2 instability for d < 0 lie outside the 

linearly unstable region; thus this instability would not be expected to equilibrate a t  
low amplitude. Numerical calculations (figure 14 or Gent & MeWilliams 1986) show 
that indeed the elliptical mode tends to break up into dipolar structures as the form 
of the linear mode and the simple point vortex calculation suggested. The simulations 
shown use the fully nonlinear contour dynamics (Zabusky et al. l979), with points 
inserted as needed. The code was provided by S. Meacham. These show that the cases 
with initial b values near the critical case (2.0), break into dipoles, while vortices with 
smaller b values tend to form structures with a fair amount of vorticity from the 
inner circle left in a band rather than forming two patches. Simulations with a 
pseudo-spectral code suggest that  tripolar structures may be formed by these 
compact initial conditions when the transitions in vorticity are fairly smooth. 

(ii) The baroclinio m = 1 transition when d < 0, however, is generally also a 
subcritical bifurcation, although we did find small regions (near d = -0.4 and 
h = 1, for example) which appeared to be a standard fork bifurcation. 

(iii) For the d > 0 modes, we find that the finite amplitude curve is shifted to the 
right, so that the transition caused by decreasing b is subcritical; this agrees with the 
results of Benny & Maslowe (1975) that the shear-layer instability does not 
equilibrate a t  small amplitudes. The other transition, when the vortex becomes 
stable again a t  smaller b is a normal supercritical one; however, a t  smaller outer 
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FIGURE 14. Break-up barotropio vortex to an m = 2 barotropic instability. ( a )  Corresponds to  
b = 1.9 and (b )  to b = 1.4. 
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annulus sizes, we expect the higher modes to be more important and these, again, are 
likely to grow until the shear layer breaks into ‘beads ’. Dritschel(l986) demonstrates 
numerically that a finite amplitude perturbation of the neutral vortex at A = 00 and 
b = 2 (the right-hand side boundary of the instability region) is unstable and grows; 
this is consistent with the findings of the weakly nonlinear theory. 

If we next consider the baroclinic single region ‘heton cloud‘ problem, we find 
that : 

(iv) If there is no barotropic flow, the transition is supercritical; numerical 
calculations of Helfrich & Send (1988) indicate that equilibration indeed occurs, but 
only for values of h very slightly above the critical value. For larger radii, the vortex 
breaks up into dipolar structures like those observed by Griffiths & Linden (1981). 

(v) In  the presence of barotropic flow, the results are more complicated: large 
enough barotropic flow may make the transition become subcritical as h increases. 
This occurs fairly near the cutoff associated with large barotropic flow. The 
transitions to stability for large radii in the presence of barotropic circulation tend 
to be subcritical; here again though, the higher wavenumber modes must be 
important. 

For the isolated vortex, we find a pattern which is fairly simple: 
(vi) For the barotropic, isolated vortex, the instability is subcritical for either the 

barotropic m = 2 or the baroclinic m = 1, 2 mode perturbations. 
(vii) As the ratio of barotropic to baroclinic velocities a t  r = I is reduced, the 

m = 1 mode remains subcritical for small and large values of h but can be 
supercritical for intermediate ranges of vortex sizes. The m = 2 mode shows 
supercritical transitions to instability a t  high h and subcritical ones for intermediate 
h values as the outer radius b decreases. 

(viii) When the lower layer flow at r = 1 is counter in direction to the upper layer 
flow (V, < d d ) ,  the m = 1 twisting mode instability disappears and the remaining 
m = 2 elliptical mode has subcritical transitions in the baroclinic regime (vortices 
large compared to the deformation radius h > 2 )  when the outer radius b becomes 
large enough and the vorticity in the outer region is not too large. I n  the barotropic 
regime, (vortices small enough compared to the deformation radius h < 2 and having 
a sharp enough shear layer in their outer region b < 2 to 2.5), the transitions will 
generally be subcritical. 

In  summary, then we generally find three kinds of behaviour: 
(a) A supercritical (equilibrating) elliptical instability for large baroclinic vortices 

with wide and weak outer shear zones. 
( b )  A subcritical (non-equilibrating) elliptical instability for eddies intermediate in 

scale compared to the Rossby radius and having narrow enough (and strongly 
enough sheared) outer annulli. 

(c) A subcritical twisting instability for eddies which are small enough compared 
to the deformation radius, have wide enough outer regions, and have co-rotating 
flows in the upper and lower layers. 

6.  Conclusions 
We have discussed the inst,ability of three different basic state vortices. For the 

purely barotropic eddy, we find a non-equilibrating elliptical mode instability when 
the vorticity in the inner and the outer regions is opposite in sign. Numerical 
simulations show that such vortices will break up into either dipoles or tripolar 
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states. In addition, a baroclinic disturbance may grow on the vortex if the size of the 
eddy is small enough compared to the deformation radius associated with the vertical 
structure of the baroclinic perturbation and the vortex may bc unstablc t o  this mode 
even when it is stable to barotropic disturbances. When the vorticity is the same sign 
but larger in the annular region, a non-equilibrating instability can occur when the 
outer annulus is thin enough. 

A baroclinic eddy with only a single patch of anomalous vorticity in each layer in 
the horizontal - a heton cloud - is unstable when the scale is large enough compared 
to the deformation radius. The exact stability boundary depends upon the amount 
of barotropic flow in the vortex, as does the nature of the finite amplitude 
bifurcation. The cases near the smallest possible unstable radius tend to have a 
nonlinear equilibration. 

Isolated vortices, i.e. those having no flow outside the radius r = 6, are stable for 
large enough outer radius b and intermediate values of h (the ratio of the inner radius 
to the deformation scale). The instability at small outer radii leads to a non- 
equilibrating elliptical mode growth and, presumably, to dipole or tripole formation. 
The instability for large enough scale compared to the deformation radius leads to 
growth and equilibration of an elliptical disturbance (or, more precisely, vacillation 
in an inviscid system; cf. Helfrich & Send 1988). Finally, the transition a t  small 
scales compared to  the deformation radius leads to nonlinearly enhanced growth of 
a twisting mode, so that the deep vortex separates from the surface one. This type 
of instability, found originally in Gent & McWilliams (1986), can occur when the deep 
flow has the same sign of circulation as the surface flow. The growth rates are 
relatively small, but, like the barotropic case, this mode may grow in regions stable 
to  elliptical mode disturbances. 

Ikeda’s (1981) work also contains numerical simulations of the evolution of 
(somewhat sizeable) perturbations. He does see in a low growth rate case, which 
might be only marginally unstable, a growth and then decay of the perturbation and 
interprets this as a nonlinear stabilization. It seems that he is working in effectively 
the h > 2 regime, so that his results may be consistent with our analysis. In  more 
strongly growing cases, the vortices do break up into dipoles, similar to the 
calculations of Helfrich & Send (1988). Direct comparison of our calculations with 
numerical models is difficult, since it is not really clear to what degree the contour 
dynamics model successfully mimics the evolution of a smoother vorticity field in the 
presence of dissipation. I n  some cases, a model with a few contours can capture most 
of the main features of a nonlinear interaction, while in others, the smooth fields 
evolve quite differently, with significant distortion of the eddies and entrainment. 
We feel that the linear instability calculation probably mimics fairly well the strong 
instabilities of smooth fields, but lacks the weaker modes associated with critical 
layer phenomena. In  the nonlinear problem, we are encouraged by the dipole 
formation experiments of Gent & McWilliams (1986) and Flier1 (1984) in cases where 
the theory predicts subcritical bifurcations and the failure to form dipoles in Ikeda’s 
(1981) experiments in the theoretically supercritical regime. However, it is not easy 
to locate these numerical experiments on the (b ,  A)-plane precisely and the theory 
does have regions in this plane where the sign of the nonlinear coefficient is very 
sensitive to changes in the parameters ; thus, we would not say that the simulations 
really confirm the analysis. 

Our results imply that stable vortices must have relatively weak shear beyond the 
velocity maximum so that the outer radius is greater than two times the inner radius 
where the maximum velocities occur, and they must be sufficiently small compared 
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to  the deformation radius (inner radius less than about 2.1 times the deformation 
radius) if there is any vertical shear. Finally, if the deep flows circulate in the same 
direction as the shallow flows, it is also necessary that the inner radius (measured 
by A )  exceed about 1.2/(b- 1 ) .  In terms of the inner radius R, the outer radius R,, 
and the deformation radius R,, these three conditions for stability are R, > 2R, 
R,-R > 1.2R, and R < 2.1R,. 

Appendix A. The degenerate rn = 1 mode and vortex propagation 
Here we show that the mechanism described by Stern (private communication) 

and Biebuyck (1986) is applicable to the two-layer baroclinic vortex : the existence 
of a degenerate m = 1 mode implies that vortex propagation will occur. For a vortex 
moving steadily a t  speed c in the x-direction, we have 

( V 2 + L z )  Y = F(!P+cy) .  

For the contour dynamics model F is piecewise constant with the boundaries of each 
domain being lines of constant Y+cy. For the single-vortex patch, we have 

and Y(l+r(8, z ) ,  z ) + c ( l + r ( O ,  z ) )  sin8 = f(z). (A 2 )  

If we now assume that the vortex is only slightly perturbed from circular and c is 
also small, ( A  1)-(A 2 )  reduces to 

The homogeneous part of this system is just (4.1) with SZ = 0. However, the sin8 
term implies that  the m = 1 mode will be present for a propagating disturbance. 
Expanding in the vertical and truncating yields 

1 

(0  l-m ) (i;)=(-;). 
0 170(1-211K1) 

Clearly we require V, = 0 (no net circulation) for the propagating solution to exist. 
Equation (A 4) then gives the amplitude of the baroclinic displacement 

or, alternatively, the speed in terms of the horizontal displacement of the upper and 
lower centres, that is the tilt of the axis. These approximate solutions are smoother 
versions of the Hogg & Stommel (1985) ‘ hetons’ in the limit of small displacements 
of the two centres with respect to the vortex size. (The limit of large displacement 
is the same as the point vortex case.) 

Note that h, is arbitrary - barotropic displacement of the interface just 
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corresponds to a shift in the origin of coordinates. If we look a t  the associated 
streamfunction fields, from (4.2), we find 

1 
Po = --TI> 

PI = - T o - t T l  
Thus there is a barotropic antisymmetric component to the flow fields (the similarity 
to a barotropic modon (antisymmetric) with a baroclinic rider (symmetric) is clear). 
The baroclinic component, indeed, is arbitrary in this problem as well. 

This argument will be important in the solution presented next for the 
continuously stratified model. We include it here to demonstrate that  the two-layer 
model does not necessarily smoothly extend to the continuous case. We set V, = 0 
and take I+ and y proportioned to sine. Equation (A 3) becomes 

F(Z)T+I+( i ,  2 )  = -c. 

Eliminating the term F(x)y  from these leads to 

Clearly only the barotropic mode is forced by the c terms, though it is possible to add 
a baroclinic mode as well since it will satisfy (A 5 ) .  The barotropic solution is 

where - 1 
.2$(i)  = -- [c+I+(l)] .  

I ,  Kl 

This equation relates c to the displacements of the interface 

m 4 T ( 4  = - C - I + ( i )  

so that 

Although this result satisfies the linearized equations (A 3), it  is clearly unsatisfactory 
because of the singularity a t  the depth where F(z)  changes sign. The linearization 
must break down and a more complicated structure, probably involving patches of 
anomalous vorticity which close off in the vertical, is required for a fully nonlinear 
solution. It is also curious that the perturbed columns on the upper and lower water 
columns lean away from each other as the middle depths are approached-the 
structure does not look like a single column with an increasing northward shift going 
toward the surface. 
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Appendix B. Finite amplitude baroclinic jet 
In this Appendix. we consider in detail the instability of a baroclinic jet flow 

with 6 = 1, h = 1. We shall discuss three procedures for calculating the nonlinear 
structures (refer back to figure 13). The vorticity distributions are slightly different. 
for procedure (a), w r )  = -0.5 for y < p and 0.5 for y > p ;  wf) = 0 in the first part of 
the computation and up) = 0 ;  wf )  = 0.5 for y < ,u and -0.5 for y > ,u for the 
second. 

In procedure ( b ) ,  we have w!) = k0.5, w:) = rO.5 for the north/south regions. 
Since we are Taylor-expanding around y = 0 for each order in amplitude. we will 
match the north and south solutions in a Taylor-expanded sense a t  y = p for the 
upper layer and y = p for the lower layer. In procedure (c), the potential vorticity in 
the intermediate region, negltvAed in the analysis ( b )  (i.e. the region bctwwn y = p 
and y = p)  is given by up), up) = -0.5, -0.5. 

We begin the discussion of procedure (a )  by detailing the calculation of thtl 
flow induced by the upper layer potential vorticity structure, a step function at 
y = p(x, t ) ,  with zero quasi-geostrophic potential vorticity in the lower layer. This will 
be summed later with a similar calculation for the flow associated with the lower layer 
anomalies. These manipulations are tedious ; we used the symbolic algebra package 
MUSIMP to  carry them out. We define a vector of upper and lower layer flows north 
and south of the interface 

where $ is used as a shorthand for eikx, 

and 

si = (1  tj2kZ)k. 

13 FLM 197 
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The coefficient vectors A j  are found by matching Y and U;, for both layers a t  the 
interface, y = p. If we define 

1 0 - 1  0 
0 1  0 - 1  

aY ay 

we have CAMi A, q5i = - AR. (B 2 )  

We use amplitude/Fourier expansion to solve (B 2). The matrices A M i  and the 
vector AR are Taylor-expanded around y = 0. As a shorthand, wc will define 

and 

This yields AR(p) z So + pS1 + +pp2S2 + . . . 
The previous expression, a similar one for the A M  matrices and the expansion for 
Pl 

are now substituted into (B 2 ) .  In more general problems, we would have to include 
p, $, terms and (in the circular geometry) evcn a po correction. Here these terms are 
ruled out because of the north-south symmetry and the conservation of mass. 

We then collect like powers of q5 and like amplitudes, using the amplitude ordering 
( A ,  - p,) and ( A ,  N A ,  - p, - p;) ,  to derive a set of matching conditions. We now 
must solve the linear equations 

P = P l $ + P T $ - l ,  (B 3) 

Dy A ,  = -pl S1, 

D: A ,  = -pl PT S2 -pl 0; AT -p: 0; A,,  ] (134) DgA, = -1 2s2- 
2P1 P1D: A,,  

DYAi =-I 2 *s3- zP1 P1 P1 % A ,  - PT Q 4 --PIP? D;Al -id D; AT. 

The coefficient A; represents the cubic correction to the amplitude vector for the 
eikx mode. We could also introduce a pi term to explicitly represent the order 
amplitude cubed correction to the interface displacement ; however, it is not really 
needed here and will instead come in when we do a bifurcation analysis. We solve 
these four equations (noting that although the matrix D: is not invertible, the 
equation still does have a solution) to find: 
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Now we can evaluate Y(')(x, p(x, t ) ,  x, t )  and P ) ( x ,  p(x ,  t ) ,  x, t )  where the lower 
layer interface displacement is represented by p. We again use equation (B i ) ,  
expanded in amplitude and Fourier modes. For the upper layer, by the previous 
steps, we have forced limy+,, !P(')(y < p )  = limy+,, Y ( l ) ( y  > p )  in the Taylor-expanded 
sense. For the lower layer, however, we do need to be concerned about switching from 
the Y ( " " ) ( y  c p )  form to the Ylc2)(y > p)  form when p < p  or p > p ,  respectively. 
Although Y(') is continuous everywhere, not all of its derivatives are, so that Taylor 
expansion could lead to  problems. Fortunately, though, the first discontinuity occurs 
a t  the level of the fourth derivative (this follows from the equations relating Y to 
wp and the fact that YFi is discontinuous). Since in our amplitude expansion we need 
to use only the first three derivatives of Y(""), we can evaluate Yc2) (p)  using either the 
y > p or y < p form. 

For this version of the expansion, we introduce a matrix 

and represent terms in the following fashion : 

We substitute for p and p as in (B 3), and collect like terms to find, finally, that the 
x-independent and eitkX modes evaluated on the interfaces are both zero. Thus there 
is no tendency to excite the second harmonic wave. The results for the primary mode, 
up to the cubic term, show that indeed the first and third elements of the vector 
match, as do the second and fourth: this verifies that the conclusion reached in the 
previous paragraph about the Taylor-expansion is correct. The final expressions 
are 

We now carry out the same operations for the vorticity anomaly in the lower layer, 
using 

13-2 
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and sum the results. The resultant expression for the stresrnfunction is then used in 
the kinematic interface equation to yield the approximate expressions for the time- 
evolution : 

l a  1 1  1 1  _ _  iE = +<)++<-;) 
+ib: PT(E--S,) + P?PT(SZ - 2 4  + 2Pl PTPu, + ~ p l P l / ~ : ( ~ - ~ ~ l )  

+ PT ,u:(E - 8’) + ,u; , 4 ( 4  + s2 - 48, - 2k) l .  

Standard bifurcation analysis near k = 1 (the stability boundary) shows that 
(i) At lowest order, p1 = A(t) ,  p l  = -p l .  

(ii) At next order, 
2/2-1 a 
d‘ at 

p;+pi  = 4i--A. 

(iii) At the third order, 

Equation (€3 6) shows that the jet is unstable for E < 1 and that thcrc is an 
equilibrium steady solution for 

- 2 ( E -  1 )  
IAI2= / c  1 > 

v3-1 

which exists on the unstable side ( E  < 1)  of the bifurcation point. 
The analysis of this problem with the approach of Pedlosky (1985) (approach ( b ) )  

differs on1.v slightly from that above. Unfortunately, the problem is very sensitive to 
small changes. For this method, (B 2) is solved by expansion of the upper layer field 
a t  y = p and the lower layer flow a t  y = p,  simultaneously, so that 

A R ( p )  % So + NS’ + gNNSz + . . . 
The linear equations to bc solvcd arc basically the same as above with p1 replaced 

by N,. The only difference in the solution is that  

A ;  = 
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whereas the total A ;  from the upper and lower layer vorticity patterns in the 
previous approach is 

ik(P4PT -P.:P.T) 

Qk(P4pT-P: PT) 
Q%(d PT +APT) 

(K 8) 
A ; = (  +l(P; PT +PufPT) ) .  

The different form of A ;  leads, eventually, to an evolution equation very like (B 6) 
except that  the factor 1 - 4 5  is replaced by -545. But since this changes the sign 
of the nonlinear term, the character of the bifurcation is opposite to that predicted 
by our version. 

Solution of the third problem in figure 12 reveals the weakness in the second 
approach. We follow the procedure outlined for the second approach except that the 
A ,  S vectors have eight components, corresponding to two matching conditions in 
each layer at y = p and two in each layer a t  y = p, the A and M matrices are 8 x 6 
and the D matrices are 8 x 8 .  The mean flow vector is given by 

R =  

We have calculated the second- and third-order terms only for the case when p = - p  
and k = 1. The expression for A ;  is the same as for the first procedure: (B 8) with the 
substitutions just mentioned. We have then looked at  the stationary solutions, 
requiring Y = constant on each interface. The results agree with (B 7 ) .  

We believe that the second calculation is in error, because neither of the two 
solutions being used for matching is correct in the region p < y < p or p < y < p. 
That is, we cannot directly write an analogous equation to (B 1) if we wish to 
represent ! P ( y  < p or y > p )  and Y(2)(y < p or y > p),  because this representation is 
not exact unless we explicitly include the regions between the two curves as in the 
third calculation. Although ‘this region is very narrow, the correction which arises 
from it enters a t  the cubic order. The procedure we shall use for the circular problem, 
the first one in (B l ) ,  does have the flow in this region represented properly to this 
order as a sum of that arising from the upper layer vorticity distribution and that 
arising from the lower layer; i.e. (B 1) is an exact representation of that part of the 
flow from the upper layer vorticity distribution. (It is the case, however, that our 
solution cannot be pressed to the next order without more explicit concern for this 
area.) 

Appendix C. Circular vortex finite amplitude calculations 
The circular vortex problem is very similar to the jet problem considered in 

Appendix B, except that 
(i) There are both @independent and second-harmonic corrections to the interface 

displacement. Thesc must be included explicitly both in the calculation of the 
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streamfunction as a functional of the perturbation of one of the boundaries and in the 
calculation of the nonlinear eigenvalue problem. 

(ii) We consider four interfaces, inner upper and lower layer boundaries located at  
1 + ~ ( l )  and 1 + r(2) and outer boundaries a t  b + 7(l), b + 7('). 

(iii) Only steady state solutions are obtained. 
First, we outline the calculation of the flow based on a potential vorticity anomaly q 

within an area 9 of radius ao+p in the upper layer. We assume the curve Bj is 
nearly circular : 

iBj: r = a(0)  = [a,] + [pl $+ c.c.1 + [po +pz $ z  + c.c.] + [p', $ + C.C.  + q53 terms], 
(C 1) 

where q5 = exp (im8). The amplitude parameter A will be taken equal to the absolute 
value of a,  for the upper layer, innermost boundary ; all of the other first-order terms 
will be proportional to A .  I n  (C l ) ,  the square brackets show terms collected by 
amplitude ordering ; the 0-independent term at O(A2)  is chosen so that the area with 
the perturbed patch remains a t  nu: including all order A 2  terms. Based on this 
comment. we have 

The equation for Y is the same as (B 1 )  except that we now explicitly order the terms 
and indicate the A3 corrections : 

The matrices are given by 

)> r m  I,(hr) 0 
rm -81m(Ar) 0 

0 0 r-m K,(hr) 
0 0 rPm -8K,(Ar) 

R = M; V +  const. vector s 

Mj = 

with the mode number m being 2j. We represent the vector R by 

where V is related to the patch vorticity by 

The matrices D; and vectors S" will be defined as in Appendix B using the A,matrix. 
(The y derivatives are replaced by r derivatives, of course.) These matrices, when 
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multiplied by the appropriate amplitude vectors A and Fourier functions 4, give the 
step in nth and n-tfirst derivative in the upper and lower halves, respectively. 

The linear equations giving the amplitudes Aj are quite similar to (B 4) except 
for the additional corrections to the vortex shape : 

1 1 - (Po P1+ P2 P1) s -ids3 -P1DkAo - P1 0:: A2 - (Po + P 2 P :  -41 -% 0; A,. i 0; A,  = -pl S', 

D:Ao = - , D , , S ~ - , D ; S ~ - ~ ~ ~ D : A ~ ,  

D;A2 = -pzS'-$p2S2-plD~Al,  
DOA' - - 

(C 3) 

Here, we have also explicitly used the fact that  all fields are real for the equilibrium 
case when the vortex motion is steady. The D matrices and S vectors are evaluated 
a t  r = a, here. These equations are solved numerically to give the vector 
proportionality constants relating, for example, A,  to p2 and p:. Thus we have 

The next step is to relate the streamfunction values on each of the interfaces to the 
amplitudes A,, analogous to the step (B5) .  Because we have four intedaces, we 
cannot represent the result in quite the same fashion; rather we seek 

With the definitions 

and 
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we can write 
Y = Go + N@l ++NNG2 + ... 

where thc vectors e,s are given by 

and the notation r = 1, b stands for evaluating the first two rows a t  r = 1 and the 
second two a t  r = 6.  Thus the superscript indicates the order of the r derivative, and 
the subscripts are the Fourier mode and a marker of the dependence on the shape 
of agj .  These P vectors arc the fundamental results of the first stage of the 
cwmpu tation. 

In the final part of the first stage, we next need to combine the results for the four 
different patches. For each of the patches, we follow the same sequence of steps, 
except the V ,  R ,  and a values are different. We can now define the sum of the four 
Gn vectors by, for example, 

X@ = C ~ ~ I ~ = * , ~ + ~ P 3 1 . 1 Z 1 1 ~ $ + $ - 1 ~ + ~ ~ o , O ~ O + ~ , , 1 Z 1 ~ ~ + 1 ~ , 2 Z 1 2 + ~ ~ , 2 1 ~ ~ ~  ( $ z + + - 2 ) .  

Here the matrices P are constructed by stacking the four corresponding P vectors 
associated with patches one to four side-by-side to form four by four matrices. The 
vevtors such as qHqz will be ckfined by 

etc. Altogether, the fourteen P matrices give us all we need for the calculation of the 
functional dependence of Y on each boundary upon the shapes of the various 
boundaries. 

The second stage, satisfying the kinematic boundary conditions, written as 

Y =  SZ(Bq+@), 

with 

1 0 0 0  

B = (  O O b O  '), 
0 0 0 6  
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proceeds by making the same kind of expansion and gathering of Fourier 
components, using (C 5) and the matrix form of (C 6). At lowest order. we have 

N, CRr + P:, qI = QBv,. 

Since N, is diagonal, we can rewrite the first term by defining a matrix Rr which has 
the elements of C R ,  on the diagonal and zeros off-diagonal. Then we have an 
ordinary eigenvalue--eigenvector problem 

u1~1 = (Rr + Pl", 1) = QBtll 

and we can find the eigenvalue, eigenvector and the adjoint vector 

l:(Ul-52B) = 0. 

This problem can, of course, be converted into (5.1) by a similarity transformation. 
It appears different only because i t  is written in terms of layers and streamfunction 
Fourier mode amplitudes rather than vcrtical modes and boundary perturbation 
amplitudes. 

At the next order. we have a matrix problem to solve for the second harmonic 
corrections to the interface shape : 

which is solved numerically for q Z .  The correction to the 6' independent intcrfacc 
position is already known by conservation of area to be 

lo = - B-llT. 

At the last order, we pick up the corrections to  ql (qi, the cubic nonlinearity terms) 
and the correction to the frequency 52. The result is 

(4 - w 11; + p:, 10 I1 l o  + pl", 12 l l  l z  + pl", 11 l; 

+Nl(PkO l o  +p:,01 l i  +pi,  2 1 2  +p;,21 l 3  + (NO + N2) p:, I l l  + Wl Nl PT, 1 l l  

Multiplying by the adjoint vector q: and normalizing by the factor multiplying the 
last term leads to the final expression for the cubic term d52/dA2. 

This work was supported by grants from the Kational Science Foundation (OCE- 
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